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1. Introduction

Orbifolds play a prominent role in both field and string theory compactifications to four

dimensions. They provide the simplest geometries allowing for four-dimensional (4d) chiral

fermions and N = 1 supersymmetry, offer a plethora of symmetry breaking possibilities,

and at the same time possess a high degree of calculability. They are also particular limits

of more general backgrounds such as Calabi-Yau manifolds, and thus provide a useful tool

to understand these more involved geometries.

Over the last decade or so, field theories with extra dimensions have become one of the

most popular ideas for theories beyond the Standard Model. Consequently, many papers

deal with radiative corrections in these kind of models [1 – 6]. An intriguing feature of these

models is that many operators in the 4d effective action are independent of the UV com-

pletion, as they do not correspond to local counterterms in the higher dimensional theory,

and the UV sensitivity is cut off by the inverse size of the internal space. The majority of

the literature on radiative corrections deals with particular orbifolds and applications, and

either sums over the whole Kaluza Klein tower or restrict to the effective 4d theory. The

latter procedure is very simple but discards part of the UV completion and thus sacrifices

some of the calculability. The former procedure grasps the higher dimensional structure
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of the theory but can quickly become rather complicated, especially if one is interested in

renormalization of operators beyond the effective potential.

Without doubt, the most efficient method to calculate the one-loop effective action

(OLEA) is the manifestly covariant method by DeWitt [7] and Gilkey [8]. External lines in

Feynman diagrams are traded for a field-dependent mass matrix that is totally covariant

in the background fields. For a noncompact d-dimensional theory, closed expression for

the OLEA (up to a fixed order in the dimension of the operators) can be obtained, that

are valid for particles of any spin. The effort for particular applications then consists in

determining the background dependence of the mass matrix of the dynamical particles

and using this particular form in the general expressions. Since this can be found by a

linearization of the equations of motion, this method provides an extremely simple and

efficient way to calculate the OLEA. The central quantity in the calculation of the effective

action is the Schwinger proper-time propagator, or heat kernel,

K(T ) = exp[−T (−D2 + E)] , (1.1)

where D2 is the background covariant d’Alambertian and E the background dependent

mass matrix. The standard evaluation of K proceeds through an expansion in powers of

T or, equivalently, in the dimension of local operators. The goal of this paper is to apply

the covariant background method to orbifold compactifications.1 Our formalism avoids the

summation over KK modes altogether and shows the local and nonlocal structure of these

models in a particularly clear way.

In this paper, we will make the assumption that the fields occuring in the covariant

derivatives as well as the mass matrix E in eq. (1.1) are independent of the extra dimensi-

nonal coordinates. Backgrounds of this type allow one to study the effective action of the

light degrees of freedom of most orbifold compactifications, i.e., whenever the zero modes

have flat profiles.2 While this assumption greatly simplifies the results, one loses some of

the invariances inherited from the higher dimensional theory. As is well known [3], gauge

invariances related to normal derivatives lead to a larger invariance group at the orbifold

fixed point than one would naively expect. These additional symmetries are not manifest

in our approach. We will come back to this issue in the examples and in the conclusions.

The organization of this paper is as follows. In section 2 we study the simple case of

a toroidal geometry. We will show that the one-loop trace involves a summation over the

torus lattice and propose a further expansion of the heat kernel coefficients in powers of the

lattice vectors. We explicitly evaluate the coefficients up to operators of dimension four.

In section 3 we proceed to orbifold geometries of the type T n/ZN . We show that each of

the N orbifold sectors generates a contribution that corresponds to the heat kernel of the

sector’s fixed torus with a shifted mass matrix. We also discuss the presence of discrete

Wilson lines which modifies the individual contributions in an interesting way. In section 4

1Heat kernel techniques have previously been applied to orbifolds in ref. [9] in the context of anomalies.

Heat kernel coefficients on boundaries have been calculated in refs. [10], see also ref. [11] and references

therein. The case of conical singularities has been discussed in refs. [12].
2Let us stress though that this assumptions only applies to background fields, i.e. we retain the full

tower of Kaluza Klein excitations in the loop.
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we present two applications of our formalism, the calculation of the effective potential in

6d T 2/ZN gauge-Higgs unification, and the one loop kinetic terms for the gravitational

moduli in 11d supergravity compactified on an orbifold.

2. Toroidal compactifications

In this section we would like to analyze the one-loop effective action of zero modes of the

compactification on a torus.3 As it turns out, the case of the torus provides all the technical

tools for the orbifold compactifications, to be considered in section 3. The contribution to

the OLEA from a generic field can be written as

Seff [A, g, . . . ] = −(−)F
1

2

∫ ∞

0

dT

T
Tr exp[−T (−D2 + E)] . (2.1)

On the right hand side we have included a field-dependent mass-matrix E whose form will

depend on the particle circulating in the loop. The derivative is covariant with respect to

all gauge and gravitational symmetries. We will assume that the zero modes have a flat

profile4 in the extra dimension, but will take into account an arbitrary dependence on the

4d coordinates, i.e. AM (xµ), gMN (xµ) etc. This particular background allows one to extract

information on renormalization of operators containing derivatives, such as kinetic terms.

We will frequently use d-dimensional covariant quantities which should be decovariantized

at the end. It is worth noticing that the inverse propagator can always be cast in the

form −D2 + E, at least for a suitable choice of gauge [11]. The mass matrices for a fairly

generic class of theories are reviewed in appendix A. The trace Tr includes an integration

over spacetime as well as a summation over all internal indices; in the following we will

denote the internal trace by tr. The exponential in eq. (2.1) is called the heat kernel of the

differential operator −D2 + E,

K(x, x′, T ) ≡ 〈x| exp[−T (−D2 + E)]|x′〉 . (2.2)

From its definition it satisfies the differential equation

−∂T K(x, x′, T ) = (−D2 + E)K(x, x′, T ) , (2.3)

and the initial condition

K(x, x′, 0) = δ(x − x′)1 . (2.4)

Let us now consider the internal space to be an n−dimensional torus T n defined by a

lattice Λ whose elements we will denote by λ. The trace can then be written as

Tr K(T ) = tr

∫

ddx
∑

λ∈Λ

K(x, x − λ, T ) . (2.5)

3In this paper we will be interested only in the effective action of the light modes, but will take into

account all the heavy KK states in the loop.
4We would like to stress that in principle there exists no conceptual difficulty in incorporating non-flat

profiles in our formalism. However, the zero modes of many applications do have flat profiles and we will

restrict to these cases in this paper. The case of nontrivial wave functions, e.g. warped compactifications,

quasi-localized fields, or massive KK modes is left to future work.
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The term in this sum corresponding to λ = 0 will just give rise to the usual d-dimensional

one-loop effective action. It describes particles traveling on closed loops that can be con-

tracted to a point. On the other hand, the terms with nonzero lattice vectors describe

closed loops that cannot be contracted and, hence, have finite length. These contributions

can never lead to ultraviolet divergent amplitudes. To see this, it is instructive to directly

evaluate eq. (2.5) under the assumption that the background fields are constant. In other

words, we calculate the operators in the OLEA that do not contain any derivatives, i.e the

effective potential. Introducing a complete set of momentum states5 one finds

K(x, x − λ, T ) =

∫

ddp

(2π)d
exp

(

ip · λ − T [(p − A)2 + E]
)

=
1

(4πT )d/2
exp

(

iλ · A − λ2

4T
− T E

)

. (2.6)

Here we have also assumed that [Ai, Aj ] = 0 so that we can diagonalize the Ai simulta-

neously and perform the shift in the momentum variable. The ultraviolet region of the T

integration corresponds to small T which is thus strongly suppressed for nonzero λ. We will

refer to the contributions of non-vanishing λ as nonlocal throughout this paper, while the

λ = 0 term is called local and leads to renormalization of all local d−dimensional operators

in the effective action that are compatible with the symmetries of the theory. All nonlocal

operators in the effective action (including the ones containing derivatives of fields) will

come with an exponential suppression factor as well as the Wilson line present in eq. (2.6).6

In the following we will evaluate the heat kernel on the torus for more general backgrounds.

The standard evaluation of the heat kernel proceeds through an expansion in powers

of T or, equivalently, dimension of the local operators. To satisfy the initial condition

eq. (2.4), one introduces the following ansatz

K(x, x′, T ) =
1

(4πT )d/2
∆̄(x, x′)1/2 e−σ(x,x′)/2T

∑

r≥0

T rar(x, x′) , (2.7)

with a0(x, x) = 1. Here, σ(x, x′) is the so-called geodesic biscalar function which, by

definition, equals one half the geodesic distance squared between the points x and x′. It

satisfies the following differential equations and initial conditions.

1

2
σ;M σ M

; = σ , (2.8)

[σ;M ] = 0 , [σ;MN ] = [σ;M ′N ′ ] = −[σ;MN ′ ] = gMN , (2.9)

where the semicolon denotes covariant differentiation with respect to unprimed or primed

coordinates, and the brackets stand for the coincidence limit x′ → x. The vector σ M
; has

5Note that the momentum variable is continuous as we are working on the covering space.
6A perhaps more physical interpretation can be obtained by representing the propagator or, equivalently,

the heat kernel by a classical path integral. One has to sum over all closed paths of periodicity T with

a weight (action) given by their geodesic length squared and the associated Wilson line phase. The non-

contractible loops have nonzero length and are always weighted by exp(−λ2/4T ). This approach has, e.g.,

been followed in ref. [13].
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length equal to that of the geodesic from x′ to x, is tangent to the geodesic at x and points

in the direction from x′ to x. The so-called van Vleck determinant is defined as

∆̄ ≡ det(−σ;MN ′) . (2.10)

∆̄ is a biscalar density with the coincidence limit [∆̄] = det gMN ≡ g. The quantities

ar are called the heat kernel coefficients, they should be considered as bitensors, gauge

transforming at x from the left and at x′ from the right. In particular, the coefficient a0

is the operator of parallel transport (the Wilson line) connecting the two fibers at x′ and

x along the geodesic between these two points. The ansatz eq. (2.7) is designed to satisfy

the initial condition eq. (2.4). In the standard evaluation of the heat kernel, the quantities

needed are the coincidence limits [ar], as only these enter in the local renormalization.

There exists various ways to obtain these quantities, the most straightforward being the

recursive procedure [7] which we briefly review in appendix B. On the torus, one needs in

addition the periodic coincidence limits

[ar]λ ≡ lim
x′→x−λ

ar(x, x′) , (2.11)

that enter in the nonlocal renormalization. The OLEA can then be written as

Seff = −(−)F
∫

ddx
∑

r,λ

αd,r
[∆̄

1

2 ]λ tr[ar]λ
|λ|d−2r

, αd,r =
Γ(d

2 − r)

22r+1π
d
2

. (2.12)

As expected, only the term with λ = 0, corresponding to local bulk renormalization, is UV

divergent. Introducing, for simplicity, a Schwinger cutoff exp(− 1
4Λ2

UV
T
) in eq. (2.1), we can

write the local and nonlocal renormalizations in a similar way

Seff, loc = −(−)F
∫

ddx
√

g
∑

r

αd,r Λd−2r
UV tr[ar] , (2.13)

Seff, fin = −(−)F
∫

ddx
∑

r,λ6=0

αd,r
[∆̄

1

2 ]λ tr[ar]λ
|λ|d−2r

. (2.14)

Eqs. (2.12) to (2.14) are only valid for r < d/2 because of infrared (IR) divergences in

the T integration that are hidden in the poles of the Gamma-function present in αd,r.

Introducing an IR cutoff µ, one can see that at r = d
2 one needs to make the replacements

αd, d
2

Λ0
UV → −(4π)−

d
2 log

(

µ

ΛUV

)

, (2.15)

αd, d
2

|λ|0 → −(4π)−
d
2 log(µ|λ|) . (2.16)

The IR regulated result valid for arbitrary r is derived in appendix C, where we also apply

the well-known zeta-regularization technique to the UV divergences in the local part of the

OLEA.

It remains to calculate the periodic coincidence limits, eq. (2.11). From the interpre-

tation of a0 as the operator of parallel transport it is clear that we must have

[a0]λ = W (λ) ≡ exp(iλm(Am + ωm)) . (2.17)
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The Wilson line W (λ) contains both gauge and spin connection parts, denoted by A and

ω respectively. For the remaining coefficients, we expand ar(x, x′) in a covariant Taylor

series around x′ = x. To this end, we multiply ar by the Wilson line a0(x
′, x) from the

right, so the coefficients are polynomials of gauge covariant objects at x. Then

ar(x, x′)a0(x, x′)−1 = [ar] + [ar;M ′ ]σM ′

; +
1

2
[ar;(M ′N ′)]σ

M ′

; σN ′

; + · · · (2.18)

Eq. (2.18) can easily be proven order by order by differentiating w.r.t. x′, taking the

coincidence limit x′ → x, and using the identities

[σM ′

(N ′R′... )] = 0 , [a0;(M ′... )] = 0 , (2.19)

that can also be proven with the methods reviewed in appendix B. The result can be

expressed as

[ar]λ = [e−Dλ′ ar]W (λ) =

(

[ar] − [ar;λ′ ] +
1

2
[ar;λ′λ′ ] + . . .

)

W (λ) , (2.20)

where Dλ′ ≡ λmD′
m. Eq. (2.20) is the main result of this section. We have employed a

covariant Taylor expansion despite the fact that we are breaking covariance by the back-

grounds. It proves more efficient to keep the covariant notation and insert the explicit

background at the end of the calculation. The calculation of the coefficients is more com-

pact since no distinction is made between the different types of indices. We will show in

appendix B that calculating, e.g., [a1;λ′λ′ ] in the covariant way already provides all nec-

essary information to find [a2] etc. Moreover, we can always use the classical (tree-level)

equations of motion in the on loop corrected terms, as this is equivalent to a field re-

definition [14] (see also ref. [15]). For instance, we can always replace the d-dimensional

curvature scalar R by the trace of the energy momentum tensor, the corresponding field

redefinition being a simple Weyl rescaling.

The mass dimension of the local operators in the parenthesis in eq. (2.20) is given by

−4 + 2r + s with s the order in the λ expansion. As an example, let us calculate [a1]λ and

[a2]λ up to dimension four operators, i.e. we have to evaluate the quantities [a1], [a2], [a1;λ′ ]

and [a1;λ′λ′ ]. The evaluation can be done in the well-known manner by DeWitts recursive

procedure [7]. We perform this evaluation in appendix B, one finds

[a1]λ =

{

1

6
R − E − 1

12
R;λ +

1

2
E;λ − 1

6
ΩM

λ;M +
1

40
R;λλ +

1

120
R M

λλ; M

− 1

90
RM

λRMλ +
1

180
RMNRMλNλ +

1

180
RMNL

λRMNLλ − 1

6
E;λλ

+
1

24
RM

λΩMλ +
1

12
ΩMλΩM

λ +
1

12
Ω M

Mλ; λ + O(λ3)

}

W (λ) , (2.21)

[a2]λ =

{

1

2

(

1

6
R − E

)2

+
1

6

(

1

5
R − E

)M

; M

− 1

180
RMNRMN

+
1

180
RMNLSRMNLS +

1

12
ΩMNΩMN + O(λ)

}

W (λ) . (2.22)
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Here, Ω is the field strength of the gauge and spin connections

ΩMN = [DM ,DN ] = −iFMN +
i

2
ΣABRABMN . (2.23)

We will also need the corresponding expansion of the determinant ∆̄,

[∆̄
1

2 ]λ =
√

g

(

1 +
1

12
Rλλ + O(λ3)

)

. (2.24)

The next step is to set ∂i = 0 and decovariantize these expressions. We will leave this

step to the explicit examples and end this section by making a few comments on the form

of eq. (2.21) and Eq (2.22). First of all, notice that they contribute to the 4d effective

potential for the 4d scalar zero modes. There are contributions both from the Wilson line

as well as the prefactors [Ai, Aj ]
2, [Ai, E] etc. However, restricting to the tree level flat

directions, [Ai, Aj ] = 0 (i.e. the moduli space), we see that many contributions vanish.

This is the expansion resulting from eq. (2.6). If, in addition, we assume that Ai and E

commute, then the only constant terms left in ar result from the expansion of the field

dependent mass suppression, e−TE .

The next comment concerns the IR divergences of the double expansion in T and λ.

The integration over T is IR divergent when 2r ≥ d, as is evident from the presence of the

Γ function in eq. (2.12). On the other hand, the summation over λ produces IR divergences

once the dimension of the operator exceeds four. It is worth noticing that if the matrix E

is positive definite its smallest eigenvalue provides an effective d-dimensional IR cutoff, in

which case one gets a good approximation if one includes in the summation over Λ only the

terms with small |λ|. This corresponds to closed loops that only wind a few times around

the torus, which dominate the IR behavior.

3. Orbifold compactification

In order to obtain phenomenologically more interesting models, we would like to orbifold

the toroidal geometries considered in the previous section. The ZN orbifold7 is constructed

by identifying points that are related by a rotation of the torus:

x ∼ P k x − λ , λ ∈ Λ , PN = 1 . (3.1)

This operation is well defined on the torus only if the ZN action defines an automorphism

of the torus lattice, i.e., maps Λ to itself. This property, also known as the crystallographic

principle, greatly restricts the allowed lattices and values for N . These are well known

and classified for the dimensions most interesting for phenomenological applications, see

e.g. ref. [16] for the 10d case. The ZN group acting as rotations is known as the point group

G, while the one generated by both lattice translations and rotations is called the space

7Here we consider only orbifolds with one ZN factor. The generalization to several factors, or even

nonabelian groups, is straightforward. We also rewrite orbifolds that involve non-integral lattice shifts as

integral shifts with discrete Wilson lines.
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x‖

x‖

x‖

x‖

x ⊥

x ⊥

R
4

R
d‖−4, Λ‖

R
d⊥ , Λ⊥

Figure 1: In each k sector of the orbifold, the coordinates split into fixed (x‖) and rotated (x⊥)

under the action of P k. The crosses indicate the lattice Λ of the underlying torus, which also splits

into the direct sum Λ = Λ‖ + Λ⊥. Notice that either torus can be trivial for particular sectors.

group S. We can decompose each g ∈ S as in eq. (3.1) and accordingly write g = (k, λ).

The space group is represented on the fields as

φ(gx) = W0(λ) (PL ⊗ PG)kφ(x) , (3.2)

where PL is the representation of P on the Lorentz group and PG acts on all internal

indices (in particular the gauge group G). We have also included a discrete Wilson line

W0. Discrete Wilson lines commute with PG and satisfy

W0(Pλ) = W0(λ) , W N
0 = 1 . (3.3)

For reasons of clarity we will present the calculations of this section for W0 = 1 and only

give the relevant results for nontrivial W0 at the end.

In order to calculate the effective action in the orbifolded theory, we make use of the

fact that any field satisfying the point group constraint

φorb(Px) = (PL ⊗ PG)φ(x)orb (3.4)

can be obtained from the fields on the torus by applying the linear projection

φorb(x) =
1

N

N−1
∑

k=0

(PL ⊗ PG)−kφtor(P
kx) (3.5)

on any torus field. Consequently, we can evaluate the trace on the orbifold as8

Tr K(T ) =
1

N

∫

dx tr K(x, P kx − λ)(P †
L ⊗ P †

G)−k . (3.6)

Following the notation of ref. [5], for a given point group element P k we split the covering

space according to R
d = R

d‖ ⊕R
d⊥ , where by definition the d‖ coordinates x‖ are left fixed

by P k, see the illustration in figure 1. This splitting obviously depends on k, in order to

avoid a cumbersome notation such as xk,‖ etc. we will omit the index k when no confusion

8The projection method was first developed for the codimension-one case [10].
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can arise. In the same way we split the torus Λ = Λ‖ + Λ⊥. For the orbifold we need to

evaluate the matrix element

K(x, P kx − λ) = 〈x| exp
(

−T [−D2 + E]
)

|P kx − λ〉 . (3.7)

Using the splitting just introduced, one finds

K(x, P kx − λ) =

∫

dp⊥ exp

(

ip⊥(P k − 1) [x⊥ − xf (λ⊥)]

)

×

× 〈x‖| exp

(

−T
[

−D2
‖ + (p⊥ − A⊥ − ω⊥)2 + E

]

)

|x‖ − λ‖〉 , (3.8)

where we have used that the nonsingular matrix P k − 1 provides a one-to-one map from

the set of fixed points on the transverse space to the lattice vectors in Λ⊥. The next thing

we would like to do is to perform the trace over the transverse torus, i.e. we would like to

perform the integration/summation

Tr⊥ =
∑

Λ⊥

∫

F⊥

dx⊥ , (3.9)

where the integration is over the fundamental domain F⊥ of the torus. We now replace

the sum over Λ⊥ by the sum over all fixed points in the covering space, again by virtue of

the map. We then can write

Tr⊥ exp

(

ip⊥(P k − 1) [x⊥ − xf (λ⊥)]

)

=
∑

xf

∫

F⊥

dx⊥ exp(. . . )

=
∑

xf∈F⊥

∫

dx⊥ exp(. . . ) (3.10)

where the integration is now over the whole covering space whereas the summation over

the fixed points is restricted to the fundamental domain. From now on all summations

over fixed points are implicitly assumed to be only over F⊥. The integration over x⊥ gives

|det(1 − P k)|−1δ(p). According to Lefshetz’ formula, the determinant equals the number

of fixed points in F⊥, leading to

Tr⊥ K(T ) = exp
(

−T [−D2
‖ + E + (A⊥ + ω⊥)2]

)

≡ K‖(T ) . (3.11)

The final result on the orbifold without discrete Wilson lines is thus

Seff = −(−)F
1

2N

∫

dT

T

N−1
∑

k=0

Tr(PG ⊗ PL)kK‖(T ) . (3.12)

The trace in eq. (3.12) includes an integration over the d‖ dimensions x‖ as well as a

summation over the lattice Λ‖ of the fixed torus of the kth sector. One concludes that the

renormalization of the kth orbifold sector (i.e., the kth term in the sum) is localized on the

corresponding fixed torus. Moreover, the UV sensitive contribution, λ‖ = 0, is the local

– 9 –
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renormalization at the fixed points. The evaluation of eq. (3.12) now proceeds precisely

as described in section 2 in d = d‖ dimensions, the only difference being the shifted mass

matrix and the orbifold twists inside the trace. In particular, eqs. (2.17), (2.21), and (2.22)

are still valid. Notice, however, that the original mass matrix E is still the one obtained in

the d-dimensional theory. For instance, a non-minimally coupled scalar has E = ηRd, the d

dimensional curvature scalar, the mass matrix for a vector particle is still a d×d matrix etc.

In case there are discrete Wilson lines, we first perform the splitting

W0(λ) = W0(λ⊥ + λ‖) = W0(λ⊥)W0(λ‖) . (3.13)

The Wilson line W0(λ‖) just multiplies the background (continuous) Wilson line W (λ) oc-

curring in the periodic coincidence limit of the heat kernel coefficients, i.e. eqs. (2.17), (2.21)

and (2.22). To take into account the effect of the orthogonal Wilson line, one has to intro-

duce the following matrix in the trace in eq. (3.12)

Q⊥ = |det(1 − P k)|−1
∑

xf,k

W0(λ⊥(xf,k)) , (3.14)

leading to9

Seff = −(−)F
1

2N

∫

dT

T

N−1
∑

k=0

Tr(PG ⊗ PL)kQ⊥K‖(T ) . (3.15)

As emphasized earlier, the splitting into x‖ and x⊥ depends on the orbifold sector (i.e. on

k), and, as a consequence, the same holds true for the quantities Q⊥ and K‖. One can

interpret this result by noting that the quantity Q⊥ is nothing but the projector onto zero

modes on the transverse torus defined by the lattice Λ⊥, i.e., the zero modes that would

be obtained from compactification on the torus Λ⊥ with the discrete Wilson lines W0(λ⊥)

present. These projectors actually take very simple forms in concrete examples, as the

possible Wilson lines are very restricted. We will give the explicit forms of Q⊥ for the

T 2/ZN orbifolds in section 4.

Let us emphasize an important point. The contribution with λ‖ = 0 corresponds to

a local renormalization at the fixed points of the k-sector of the orbifold. As expected,

these are UV divergent and should respect all symmetries preserved at the fixed point. As

discussed in the literature [3], the gauge symmetries actually further constrain the allowed

operators because of shift symmetries related to normal derivatives. These remnant gauge

symmetries are not manifest in our formalism due to the fact that we have only considered

backgrounds with vanishing normal derivatives.10 With some effort one can set up a fully

covariant heat kernel expansion that manifestly displays the surviving symmetries at a

given fixed point. However, the resulting formulae are considerably more involved and we

will leave this to future research.

Finally, localized matter (twisted sectors) can appear on the fixed tori. In the trivial

case of a 4d fixed point, their contribution is just the usual 4d one

Stwisted
eff = −(−)F

1

2

∫

d4x tr K4d(x, x, T ) . (3.16)

9In deriving eq. (3.15) one has to use eq. (3.3).
10We will come back to this issue in section 4.
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For higher dimensional fixed points, the geometry seen by these fields is again an orbifold,

of dimension d′ < d and order N ′ < N which can be treated as before.

4. Examples

4.1 6d gauge theory

As our first example for the use of our methods, we consider the effective action in 6d

gauge-Higgs unification models on the orbifold T 2/ZN . In these type of models, the bulk

gauge group G is broken to a subgroup H by the orbifold twist PG . The Higgs for the further

breaking of H then resides in the A4,5 components of the gauge field belonging to the coset

G/H. The tree-level potential derives from the F 2
MN kinetic term in the action. It is impor-

tant to distinguish two kinds of 4d scalar fields resulting from the compactification: generic

massless ones (orbifold invariant states) and flat directions (a subset of the zero modes cor-

responding to the condition [Ai, Aj ] = 0). Not all zero modes correspond to flat directions.

We will consider pure gauge theory and calculate the contribution from gauge and

ghost loops, the corresponding mass matrices are given in appendix A. In flat gravitation

background they read

E1,MN = 2iFMN , E1,gh = 0 . (4.1)

The result for the k = 0 sector can be read off from eqs. (2.13) to (2.17) as well as (2.21)

and (2.22).

Sk=0
eff, loc = − 1

N

∫

d6x

{

4 dim(G)Λ6
UV

π3
+

5C2(G)Λ2
UV

96π3
F a

MNF a,MN

}

(4.2)

Sk=0
eff, fin = − 1

N

∫

d6x
∑

λ6=0

tr

{

4

π3|λ6|W (λ) +
1

12π3|λ4|W (λ)
[

iFM
λ;M

− 1

2
FMλFMλ− i

2
F M

Mλ; λ

]

+
5

96π3|λ|−2
W (λ)FMNFMN

}

, (4.3)

where the integration is over the volume of the torus, the trace in the adjoint representation,

and we recall from section 2 our shorthand notation Xλ ≡ λiXi. Eq. (4.2) is the renor-

malization of the bulk cosmological constant and the bulk gauge kinetic term. Eq. (4.3)

contains the Hosotani potential [1], kinetic terms for Aµ, as well as potential and kinetic

terms for A4,5.

The contributions from the sectors with k 6= 0 correspond to the renormalizations at

the fixed points. The fixed points are four dimensional and contain no further toroidal

dimensions, so there is only a local renormalization. We define the orbifold action on the

coordinates to be a counterclockwise rotation of angle 2πk/N . The action on the gauge

fields thus reads

P k
L =







14

ck sk

−sk ck






, ck = cos

(

2πk

N

)

, sk = sin

(

2πk

N

)

. (4.4)
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The gauge loop gives

Sk 6=0,vector
eff, loc = − 1

N

∫

d4x tr

{

(PL ⊗ PG)k×

×
(

Λ4
UV

2π2
− Λ2

UV

8π2
E′

1 −
log µ

ΛUV

192π2

[

6E′2
1 − FµνFµν

]

)}

, (4.5)

where the shifted mass matrix E′
1 ≡ E1 + A2

⊥ reads

E′
1,MN = 2iFMN + AkA

kδMN , (4.6)

with Ak and FMN considered as matrices in the adjoint representation. The ghosts corre-

spond to two scalars. Their contribution is thus obtained by setting PL = 1 in eq. (4.5),

multiplying by −2, and using the mass matrix

E′
1,gh = AkA

k . (4.7)

Adding up the contribution of the gauge fields and the ghosts and performing the trace

over the Lorentz indices one obtains

Sk 6=0
eff, loc = − 1

N

∫

d4x tr

{

P k
G

(

(ck + 1)Λ4
UV

π2
+

(ck − 3)(1 + ck − isk)Λ
2
UV

8π2
BB†

−
(ck+5)(1+ck−isk) log µ

ΛUV

64π2
BB†BB†+

(3ck−1) log µ
ΛUV

32π2
B†B2B†

−
log µ

ΛUV

4π2
FµiF

µi +
(ck − 11) log µ

ΛUV

96π2
FµνFµν

)}

, (4.8)

where we have defined B = A4 + iA5 and made use of the fact that the orbifold boundary

condition implies BP k
G = P k

GB(ck − isk). As stressed earlier, the result is not covariant

w.r.t. the remnant gauge symmetry related to the normal derivatives [3]. This is obviously

so, as we have explicitely set to zero all normal derivatives in order to obtain the simple

result in eq. (3.12). In the present case it is, however, easy to reconstruct the covariant

structure as follows. The potential should result from the following operators [3]

tr P k
GF45 , tr P k

G (F45)
2 , tr P k

GF i
45;i . (4.9)

Using again the orbifold boundary conditions, we can write

tr P k
GF45 =

1 − ck + isk

2
tr P k

GBB† (4.10)

tr P k
G (F45)

2 =
1 + ck − isk

4
tr P k

GBB†BB† − 1

2
tr P k

GB†B2B† (4.11)

tr P k
GF i

45;i = −(1 − ck + isk) tr P k
GBB†BB† + isk tr P k

GB†B2B† (4.12)
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These relations can clearly be inverted and used to replace the operators occuring in

eq. (4.8) by the covariant ones. One finds:

Sk 6=0
eff, loc = − 1

N

∫

d4x tr

{

P k
G

(

Λ4
UV(ck + 1)

π2
− i

Λ2
UV(ck − 3)(ck + 1)

4π2sk
F45

−i
log µ

ΛUV
(ck − 3)(ck + 1)

16π2(ck − 1)sk
F i

45;i −
log µ

ΛUV
(c2

k + 7)

16π2(ck − 1)
(F45)

2

−
log µ

ΛUV

4π2
FµiF

µi +
log µ

ΛUV
(ck − 11)

96π2
FµνFµν

)}

. (4.13)

It is, however, not clear if this procedure can be generalized to higher dimensional fixed

points and gravitational symmetries. First, one would need to find an independent set of

covariant operators, as in eq. (4.9), suitable for the surviving symmetries at the fixed point.

Given this set, it is not clear whether there is a one-to-one correspondance to the operators

obtained with the simpler background constant in the normal directions. We believe that

the better approach is to directly compute a fully covariant heat kernel expansion that

manifestly displays all gauge symmetries inherited from the higher dimensional theory.

This approach will be presented elsewhere [17], along the lines presented in section 5.

Including discrete Wilson lines is simple. First note that eq. (3.3) implies that the two

discrete Wilson lines have to be of order 2, 3, 2 and 1 for N = 2, 3, 4 and 6 respectively,

they also have to coincide for N 6= 2. Eq. (4.2) remains unaltered in the presence of discrete

Wilson lines, while in eq. (4.3) the background Wilson lines become multiplied by W0(λ).

Finally, the localized renormalizations now include the projectors Q⊥. The explicit forms

of these projectors are

QN=2
⊥ =

1

4
(1+ W0,1)(1 + W0,2) , QN=3

⊥ =
1

3
(1+ W0 + W 2

0 ) , (4.14)

QN=4
⊥ =

1

2
(1+ W0) . (4.15)

For N = 6 one necessarily has W0 = 1 and hence the projector is trivial.

4.2 11d supergravity

In this section we would like to calculate the one-loop corrections to the kinetic terms of

the gravitational moduli in an orbifold compactification of 11d supergravity. This is an

important quantity as it largely determines the one-loop renormalization of the Kähler

potential which, in turn, determines the scalar potential once supersymmetry is broken.

The perturbative scalar potential is of high relevance due to the large number of moduli

that need to be stabilized in these models.

We will consider an N = 1 compactification on the space T 6/Z3 × S1/Z2. The Z3

action is given by the U(3) ⊂ SO(6) preserving shift vector φ = (1, 1,−2). The T 6 complex

torus coordinates transform under Z3 as

z1 → e2πi/3z1 , z2 → e2πi/3z2 , z3 → e−4πi/3z3 . (4.16)

The Z2 action is given by x10 → −x10. To keep a compact notation we will write everything

in terms of Z6 generated by P = PZ2
(PZ3

)−1.
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h = 2 h = 1 h = 0

Z2
+1 1 6 20′+2×1

−1 1 6

Z3

θ0 10 10 80+2×10

θ1 31 6−2 31

θ2 3−1 62 3−1

Table 1: The orbifold parities of the metric (44) of the supergravity multiplet. Here, h denotes the

4d helicity and θ = e2πi/3. For the Z2 parities, we label fields by SO(6) irreducible representations.

For Z3 we write fields in terms of representations of the surviving U(3) with the U(1) generator

normalized as Q = Σ45 + Σ67 + Σ89.

h = 1 h = 0

Z2
+1 6 15+1

−1 15 20′+6

Z3

θ0 10+80 80+2×10 80

θ1 31 3−2 3−2 6−2

θ2 3−1 32 32 62

Table 2: The orbifold parities of the 3-form (84) of the supergravity multiplet. See explanations

below table 1.

The field content of our 11d theory is a bulk supergravity multiplet consisting of the

graviton, a Majorana gravitino and an antisymmetric three-form B. To cancel localized

anomalies, we would introduce E8 and E′
8 gauge multiplets at the two fixed points of the

S1/Z2 orbifold [18]. In this paper, we will restrict ourselves to the supergravity sector

only. The parities of these fields are as follows. Each vectorial index on the metric, the

gravitino, and the three-form transform as the coordinates. There is an additional overall

minus sign for the B-field w.r.t. Z2, i.e. Bµνρ has negative parity under reflection of x10.

Finally, the spinor indices transform with γ10 under Z2.
11 This assignment results in the

orbifold twists displayed in tables 1 to 3.

We will focus on the following background:

gMN = diag
(

gµν , ρ2
1, ρ2

1, ρ2
2, ρ2

2, ρ2
3, ρ2

3, σ2
)

, BMNR = 0 , (4.17)

where all fields gµν , ρI and σ are assumed to be independent of the internal coordinates xi.

This does not cover all zero modes in the supergravity multiplet: From table 1, 2 and 3 for

instance one can see that the N = 1 chiral superfields come in SU(3)-multiplets: There are

two singlets as well as one octet. The two singlets correspond to the two volume moduli

of T 6 and S1 respectively, whereas the octet describes the precise shape of the T 6 torus.

However, it turns out that it is sufficient to consider the simplified background, eqs. (4.17),

11Recall that we use Euclidean conventions with {γA, γB} = 2δAB .
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h = 3/2 h = 1/2

Z2
+1 4 2×4 20

−1 4 2×4 20

Z3

θ0 13/2 1−3/2 2×1−3/2 2×13/2 8−3/2 83/2

θ1 3−1/2 2×3−1/2 35/2 3−1/2+6−1/2

θ2 31/2 2×31/2 31/2+61/2 3−5/2

Table 3: The orbifold parities of the gravitino (128) in the supergravity multiplet. See explanations

below table 1.

and reconstruct the full kinetic terms by SU(3) invariance. Before doing any detailed

calculation, let us summarize the different places where contributions to the kinetic terms

of the gravitational moduli can arise. After restricting to the background eqs. (4.17) the

heat kernel coefficients quadratic in the 4d derivatives are

[∆̄
1

2 ]λ =
1

12

√
g Rλλ , (4.18)

[a0]λ = −1

2
(λ · ω‖)

2 , (4.19)

[a1]λ =
1

6
R − E − ω2

⊥ . (4.20)

In eq. (4.19) we have expanded the Wilson line to second order in the spin connection,

which is linear in the 4d derivative. We now parametrize the full result as follows. Let us

combine the sectors according to their fixed tori. There are thus 4 sectors, corresponding

to the ZN elements with N = 1, 2, 3, 6. They possess fixed tori T 7, T 6, T 1, T 0 and have

N = 8, 4, 2, 1 supersymmetry respectively. Then the one-loop kinetic terms are

K =
∑

d=11,10,5,4
r=0,1

(Kr, loc
d + Kr, fin

d ) (4.21)

where the finite nonlocal contributions result from the terms with λ ∈ Λ‖ nonvanishing,

and the local UV-sensitive ones from the term with λ = 0. Recall that Λ‖ by definition is

the lattice of the fixed torus associated to each orbifold sector. Clearly, K0, loc
d = 0 as this

contribution occurs only for nonzero λ. Moreover, Kr, fin
4 = 0 as the fixed torus is trivial.

We also expect that all Kr
11 and Kr

10 vanish from supersymmetry, as we will explicitly verify

below. Furthermore, one can see that all contributions from eq. (4.18) as well as from the

curvature term in eq. (4.20) vanish: they are proportional to str PL, which is just the sum

over bosonic minus fermionic degrees of freedom, weighed by their orbifold phases. Since

we have at least N = 1 supersymmetry everywhere, this term vanishes for all sectors. The

– 15 –



J
H
E
P
0
8
(
2
0
0
8
)
0
9
7

nonzero terms in eq. (4.21) are thus Kr, fin
5 and K1, loc

4,5 . Writing λ10 = 2πn, we have

K0, fin
5 =

α5,0

6
(2πσ)

∑

n 6=0

|2πnσ|−5 str

[

1

2
(2πn ω10)

2(P 2
L + P 4

L)

]

, (4.22)

K1, fin
5 =

α5,1

6
(2πσ)

∑

n 6=0

|2πnσ|−3 str
[

(E + ωℓωℓ)(P
2
L + P 4

L)
]

, (4.23)

K1, loc
5 =

α5,1

6
(2πσ)Λ3

UV str
[

(E + ωℓωℓ)(P
2
L + P 4

L)
]

, (4.24)

K1, loc
4 =

α4,1

6
Λ2

UV str
[

(E + ωℓωℓ + ω10ω10)(P
1
L + P 5

L)
]

, (4.25)

where ℓ = 4 . . . 9 and the constants αd,r have been defined in eq. (2.12). The symbol str

denotes the supertrace. In the following we will calculate these terms and also verify the

cancellations for the sectors with N ≥ 4 supersymmetry. It is convenient to define the

following combinations of kinetic terms

O1 =
∑3

I<J=1 ∂µ log ρI ∂µ log ρJ (4.26)

O2 =
∑3

I=1(∂µ log ρI)
2 , (4.27)

O3 = ∂µ log σ
∑3

I=1 ∂µ log ρI , (4.28)

O4 = (∂µ log σ)2 . (4.29)

For the contribution K0, fin
5 we need to evaluate the supertrace over the spin connection

in eq. (4.22). The spin connection along the fixed torus S1 is given by

ω10 = −Σ10β∂βσ (4.30)

where the ΣAB are the SO(11) generators. Let us define the quantity

CAB,CD
k = str ΣABΣCDP k

L . (4.31)

For the 5d sector we are interested in calculating C2 and C4. Since the generators in

eq. (4.30) are in fact generators of SO(5) ⊂ SO(11), P k
L commutes with the ΣAB and we

can symmetrize in the two generators. Each representation of SO(5) has a definite phase

p under the orbifold action. The quantity Cab above is then given by

CAB,CD
k = CδAB,CD , Ck =

∑

p

p
∑

rp

(−)F Crp (4.32)

where rp label the different SO(5)-representations of a given parity p and Crp is the corre-

sponding Dynkin index. The easiest way to calculate the Dynkin indices is to consider the

SO(2) helicity group, which is a subgroup of SO(5). This choice has the advantage that

one can restrict to physical states only and discard any unphysical and ghost states that

have to cancel each other. The Dynkin index of an SO(2) representation of helicity h is

simply12 Ch = 2h2 and all one needs to know to evaluate C is which 4d fields have a given

12The factor of 2 arises from the normalization: the SO(5) vector representation has C5 = 2 in the

standard convention for the generators.
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parity. According to tables 1 to 3 we obtain

C2 = 2

[

4 · 1 + 1 · (10 + 9θ + 9θ̄)−9

4
· (2 + 3θ + 3θ̄) − 1

4
· (20 + 18θ + 18θ̄)

]

=
27

2
(4.33)

The result for C4 is the same. It remains to be shown that in the 11d and 10d sectors

there occur cancellations, as required by N ≥ 4 supersymmetry. The spin connection now

transforms in SO(11) (SO(10)) but we can again apply our trick of calculating the Dynkin

indices from the SO(2) subgroup. From the tables one finds

Ck=0 = 2

[

4 · 1 + 1 · 28 − 9

4
· 8 − 1

4
· 56
]

= 0 (4.34)

Ck=3 = 2

[

4 · 1 + 1 · (12 − 16) − 9

4
· (4 − 4) − 1

4
· (28 − 28)

]

= 0 (4.35)

Let us then turn to the kinetic terms generated by the moduli dependence of the mass

matrices. According to our discussion in section 2, we can use the tree-level equations of

motion in the one-loop correction to the effective action, since — up to higher order terms

in the loop expansion parameter — this simply corresponds to a field redefinition. For

the background we are considering here, the equations of motion simply read RMN = 0.13

Notice that this procedure also takes care of any additional Weyl rescalings arising at

one-loop order. On-shell, the only nonzero mass matrices are

E MN
2,t PQ = −2R

(M N)
(P Q) (4.36)

E MNL
a3 PQR = −6R

[M N
[P Qδ

L]
R] (4.37)

E MN
a2 PQ = −2R

[M N ]
[P Q] (4.38)

E
A

3/2 B = −1

2
RA

BMNγMN (4.39)

(Recall that the ghosts for the gauge symmetries of the antisymmetric three-form contain

two real antisymmetric two-forms). Clearly, for the 11d sector, the trace over any of these

matrices is proportional to R and hence again vanishes by the equations of motion. For the

10d sector, notice that any trace tr PLE can generally be written in terms of R(10). However,

the equations of motion also imply R(10) = 0 and there are no Kähler corrections, as re-

quired by N = 4 supersymmetry. For the 5d and 4d sectors, notice that PL always acts triv-

ially on the 4d indices. The equations of motion then allow one to make the replacements

Rµ
iµj = −Rk

ikj , Rµ ν
ν µ = Ri j

j i. (4.40)

It should be clear at this point why the use of the equations of motion can drastically

simplify the analysis. In particular, there are no one-loop terms proportional to the 4d

13Had we been interested in the kinetic terms for the moduli originating from the gauge sector or the B

field we would have to take into account terms proportional to the energy momentum tensor when using

the equations of motion.
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curvature scalar and hence no additional Weyl rescalings are necessary. The curvature

tensor with all compact indices can be expressed as

Rℓr
sk = (∂µ log ρ̄ℓ)(∂

µ log ρ̄r)(δ
ℓ
kδ

r
s − δℓ

sδ
r
k) (4.41)

where ρ̄4 = ρ̄5 = ρ1, ρ̄6 = ρ̄7 = ρ2, ρ̄8 = ρ̄9 = ρ3 and ρ̄10 = σ. It is now straightforward to

evaluate the traces. One finds for the 5d sector

tr EtP
2

L = −18O1 (4.42)

tr Ea3P
2

L = 6O2 (4.43)

−2 tr Ea2P
2

L = −36O1 − 12O2 (4.44)

−1/2 tr E3/2P
2

L = 6O2 (4.45)

There is an identical contribution from the element P 4
L in the sum eq. (3.12). Adding all

contributions, one finds

str E(P 2
L + P 4

L ) = −108O1 , (4.46)

In a similar manner, for the 4d sector one finds

str E(P 1
L + P 5

L ) = 108O1 + 36O2 + 48O3 (4.47)

To evaluate the traces over the square of the spin connection occurring in eq. (4.23)

to (4.25), notice that ωℓ is given by

ωℓ = −Σaβδai∂β ρ̄i , (4.48)

with the index i, ℓ = 4 . . . 9. The ΣAB in eq. (4.48) are now generators that are broken by

the ZN action, which changes the evaluation of CAB,CD. Using the SO(11) commutation

relations as well as the orbifold transformations of the generators one can write

Caα,bβ
k = δαβCab

k , Cab
k = i(1 − P−1)−1 a

c str ΣcbP k
L , (4.49)

Again, this vanishes for the 10d sector (c = b = 10). For the 5d and 4d sectors, Σcb is a

generator of SO(6) or SO(7) respectively, and the trace projects onto the U(1) generator

of the surviving U(3) subgroup, so we can write

str ΣcbPL =
i

3
Qcb str QPL =

i

3
Qcb

∑

p

p
∑

qp

(−)F qp . (4.50)

where Q = Σ12 + Σ34 + Σ56. The charges can be read off from Tabs 1 to 3. Without loss

of generality we can symmetrize Cab in the two indices, so we finally obtain

C
(ab)
k = δabCk (4.51)

With

C1 = −C5 =
9 i

2
√

3
, C2 = C4 = 4 , (4.52)

– 18 –



J
H
E
P
0
8
(
2
0
0
8
)
0
9
7

This concludes the evaluation of the traces in eq. (4.22) to eq. (4.25). The result is thus

K0, fin
5 =

27ζ(3)

32π4
σ−2 O4 , K1, fin

5 =
ζ(3)

4π4
σ−2

[

−9

4
O1 +

1

3
O2

]

, (4.53)

K1, loc
5 =

1

π
Λ3

UV σ

[

−9

4
O1 +

1

3
O2

]

, (4.54)

K1, loc
4 =

1

4π2
Λ2

UV [9O1 + 3O2 + 4O3] . (4.55)

As in the previous subsection, one can recovariantize these terms in order to make manifest

the higher-dimensional invariances preserved by the orbifolding. To this end, one should

identify the SO(4)×U(3) and SO(5)×U(3) singlets that one can form from the curvature

tensor and use them to replace the operators Oi.
14 A direct evaluation of the covariant

result will be presented elsewhere [17].

5. Conclusions

In this paper we have analyzed the one-loop effective action on orbifolds. We have shown

how the evaluation of the heat kernel in each sector of the orbifold can be reduced to the one

for the corresponding fixed torus with a shifted mass matrix. We have proposed a further

expansion of the heat kernel coefficients in powers of the lattice vectors defining the tori,

and explicitly evaluated the expansion of the coefficient a1 to second order. Our formalism

is carried out entirely in position space, avoiding KK decomposition and displaying very

clearly the separation between local (UV sensitive) renormalization and nonlocal (UV-

finite) one. The main results of the paper can be found in eqs. (2.13), (2.14), (2.17), (2.21),

and (2.22) for the torus, and eqs. (3.11), (3.12), (3.14), and (3.15) for the orbifold.

To exemplify our methods we have calculated the effective potential in 6d gauge theory

on T 2/ZN and the corrections to moduli kinetic terms in 11d supergravity on T 6/Z3 ×
S1/Z2. In particular, the latter example shows how Kähler corrections can be computed in

orbifold compactifications. This is extremely useful as it allows one to analyze the moduli

effective potential in a way that is independent on the supersymmetry breaking mechanism.

Our results are restricted to operators that do not contain extra dimensional deriva-

tives. For some applications (e.g. effective operators involving KK modes, warped back-

grounds or otherwise nontrivial profiles) one might wish to study backgrounds including

such normal derivatives. While the evaluation of the toroidal heat kernel can be straightfor-

wardly extended to this case,15 the orbifold heat kernel receives further corrections. These

can be computed along the following lines. Notice that, as a consequence of eq. (3.2), the

14The SO(5)×U(3) singlets are, in the usual complex basis, C1 = RIJ
IJ and C2 = RIJ̄

IJ̄ . For SO(4)×U(3)

one can, in addition, form the invariant C3 = R10 I
10 I . All other possible invariants are either related to

these by the equations of motion or by the symmetries of the curvature tensor. One can then immediately

verify that C1 ∼ O1, C2 ∼ O1 +O2, and C3 ∼ O3. Note that the operator O4 originated from the expansion

of the Wilson line which, as a nonlocal object, does not correspond to any local operator.
15Gravitational backgrounds depending on the extra-dimensional coordinate will require to replace the

straight lattice vectors λ by the corresponding geodesics.
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heat kernel coefficients occurring in the renormalization at, say, the fixed point xf = 0

satisfy the following identity

tr ar(x, Px)(PL ⊗ PG) = tr
[

a0(xf , x)ar(x, Px)a0(Px, xf )
]

(PL ⊗ PG) . (5.1)

The quantity in square brackets is a covariant object at the fixed point, i.e., it transforms

at the fiber at xf from both sides. There exists thus a covariant Taylor expansion in the

geodesic distance from the fixed point that has as coefficients gauge-covariant operators at

xf = 0. After integrating over x, the powers in this expansion are replaced by powers of T .

In this way one can obtain a fully covariant fixed point action that takes into account the

complete invariance surviving the local projection. The explicit calculation and evaluation

of the expansion will be left to future research [17].
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A. Mass matrices

In this appendix we would like to summarize the background dependence of the inverse

propagators, or fluctuation operators, for fields of various spins, see for instance refs. [11,

20]. We work in Euclidean spacetime with the following conventions. The Christoffel con-

nection is given by ΓM
SN = −1

2∂MgSN+. . . and the curvature by RM
NRS = ∂RΓM

SN−. . . The

covariant derivative is DM = ∇M − iAM − iωM with hermitian gauge and spin connections,

the latter being related to the Christoffel connection by ωM = −1
2ΣABeN

A∇MeNB . The con-

ventions for the vector generators of the Lorentz group is (ΣAB)CD = −i(δACδB
D − δBCδA

D).

For bosonic fields, the inverse propagator F is obtained by linearizing the equations

of motion in the fluctuations around a generic background. For fermions, one takes the

absolute square of that operator. For a suitable choice of gauge, F can be cast in the form

F = −D2 + 2iBNDN + iDNBN + E , (A.1)

where the covariant derivative D contains all background gauge and spin connections,

and E and BM are matrices depending on the background fields. The parametrization of

eq. (A.1) is such that, with BM and E hermitian, F is hermitian. The matrices BM and E

can mix different fields, in particular particles of different spin. Note that we can formally

redefine the connection and the mass matrix to absorb the terms linear in the derivative:

F = −(D − iB)2 + (E − B2) . (A.2)

Whereas off-diagonal elements in E are relatively easy to deal with,16 a nontrivial B poses

a bigger challenge from a computational point of view. For the examples in this paper, we

will restrict to backgrounds that have B = 0. In the following, we give the mass matrices

for gauge theory and gravity.

16Note that, in calculating trE, the off-diagonal terms in E do not contribute and only show up at

O(E2) [20].
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A.1 Gauge theory

We take as quantum fields all particles with spin ≤ 1, but will include a general gravitational

background. We use the following gauge fixing function in Rξ gauge with ξ = 1.

G = DMAM + iG†φ − iGT φ∗ . (A.3)

where G A
b = TA

bcφ
c
0. Here, φ and A are the dynamical fields and G and D only contain

backgrounds. All covariant derivatives as well as field strengths, curvatures etc. are to be

evaluated at the background.

For complex scalar particles φ one finds

E0 = ∂φ∗∂φV + GG† + ηR , (A.4)

where V is the scalar potential and η is an arbitrary constant. For minimally coupled fields

we have η = 0 while for conformally coupled ones we have η = (d−2)/4(d−1). The second

term in eq. (A.4) comes from the gauge fixing. For fermions one finds

E1/2 = −ΣABFAB +
1

4
R (A.5)

with F denoting the field strength of the gauge connection. The overall result has to

be multiplied by −1, −1/2, or −1/4 for Dirac, Majorana or Weyl, and Majorana-Weyl

fermions respectively. Note that E1/2 is a 2[d/2] dimensional matrix. For the gauge fields

themselves, one finds

E1 MN = 2i FMN + G†GgMN + RMN , (A.6)

E1,gh = G†G . (A.7)

The second equation is the mass matrix for the ghost, whose contribution to the effective

action has to be multiplied by −2. Notice that the matrix F acts in the adjoint representa-

tion. The matrix E actually contains off-diagonal mixing terms as discussed above. They

are given by

∆L =
1

2
φT G∗G†φ + i φ†(DMG)AM + h.c. (A.8)

but do not contribute at O(E1).

A.2 Gravity

Including dynamical gravitational fields is more involved, as now a generic background

generates mixing terms linear in derivatives as discussed after eq. (A.1). For instance, a

nonzero background for the gauge field induces terms such as

(BM )N,(PQ) ∼ FM(P gQ)N , (A.9)

that mixes spin-one and spin-two fluctuations. For the sake of simplicity, we shall consider

purely gravitational backgrounds, in which case one finds BM = 0. Although slightly less

general, this background allows us, e.g., to calculate the effective action of the gravitational
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moduli. The gauge fixings for the various gauge symmetries are taken as in ref. [20]. The

mass matrices for the fields with spin ≤ 1 can be taken from the previous subsection. The

mass matrix of a rank-p antisymmetric tensor field is given by [21]

E
M1...Mp

ap N1...Np
= p R

[M1

[N1
δM2

N2
. . . δ

Mp]
Np] − p(p − 1)R

[M1 M2

[N1 N2
δM3

N3
. . . δ

Mp]
Np] (A.10)

where the square brackets on the indices denote antisymmetrization. There are p′−form

ghosts of any 0 ≤ p′ < p that are fermions (bosons) for p − p′ odd (even) and that occur

in multiplicities of p − p′ + 1. Their contribution to the effective action has thus to be

multiplied by (p − p′ + 1)(−)p−p′ . For a Rarita-Schwinger field (gravitino) one has

E3/2 AB =
1

4
RgAB − iRABMNΣMN (A.11)

E3/2,gh =
1

4
R (A.12)

The first line corresponds to the spin 3/2 field, its contribution to the effective action has

to be multiplied by −1/2 (−1/4) for Majorana or Weyl (Majorana-Weyl) fermions. There

are three spinor ghosts in total. Having bosonic statistics, the result has to be multiplied

by +3/2 (3/4). The dimension of the matrices E3/2 and E3/2,gh are d · 2[d/2] and 2[d/2]

respectively. For the symmetric traceless part of the graviton one finds

E MN
2,t PQ = R

[

δ
(M

(P δ
N)

Q) −
(

4

d2
+

1

d

)

gMNgPQ

]

− 2R
(M N)

(P Q)

+
4

d
(RMNgPQ + RPQgMN ) − 2R

(M
(P δ

N)
Q) (A.13)

where the parenthesis on the indices stand for their symmetrization. Furthermore, the

canonically normalized trace part and the fermionic vector ghosts give a contribution

E2,s =
d − 4

d
R , (A.14)

E2,gh MN = −RMN . (A.15)

The ghosts contribute with a factor −2 to the effective action. Let us remark that there

are also mass mixings between the tensor and scalar modes of the metric [20].

B. Coincidence limits

In this section we would like to review DeWitt’s recursive procedure to calculate the coin-

cidence limits of heat kernel coefficients and their covariant derivatives,

[ar;...] = lim
x′→x

ar;...(x, x′) , (B.1)

where the dots stand for any combination of primed and unprimed indices and the semicolon

denotes covariant differentiation. The ansatz eq. (2.7) is inserted in the differential equation

eq. (2.3) to derive the recursion relations

σ M
; a0;M = 0 , (B.2)

σ M
; ar;M + rar = ∆−1(∆ar−1)

M
; M − Ear−1 . (B.3)
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where ∆ = ∆̄1/2(gg′)−1/4 is a biscalar (as opposed to ∆̄ which is a biscalar density).

It is now easy to derive expressions for the coincidence limits needed in the evaluation

of the local part of eq. (2.1). This is done by taking repeated covariant derivatives of

eqs. (2.8), (2.10) (B.2) and (B.3), making use of the commutation relations for covariant

derivatives, and taking coincidence limits [7]. We will first calculate the quantities with

derivatives w.r.t. x only, the ones w.r.t. x′ can then easily be derived from Synge’s rule

[X...];M = [X...;M ] + [X...;M ′ ] . (B.4)

In particular, one can show that17

[σ;M ] = [σ;MNR] = [∆;M ] = [a0;M ] = 0 . (B.5)

Recall that the boundary condition eq. (2.4) implies [a0] = 1. Hence,

[a1] = [∆M
; M + a M

0; M − E] , (B.6)

2[a1;S ] = [∆M
; MS + a M

0; MS − E;S] , (B.7)

3[a1;(ST )] = [∆−1
;(ST )∆

M
; M + ∆M

; M(ST ) + ∆;(ST )a
M

0; M + ∆M
; Ma0;(ST )+

+ 4∆M
; λa0;Mλ + a M

0; M(ST ) − E;(ST )] , (B.8)

2[a2] = [∆M
; Ma1 + a M

1; M − Ea1] , (B.9)

and so on. Notice that [a1;(ST )] is needed both for the evaluation of [a2] as well as [a1;λ′λ′ ]

which enters in eq. (2.21). The covariant expansion introduced in section 2 is thus quite

economic in that most of the algebra for [a1;λ′λ′ ] is the same as for [a2]. To evaluate

eq. (B.6) to (B.9) one needs to know the coincidence limits of a0 and ∆ with two, three

and four derivatives which are again obtained by differentiation of eq. (2.8), eq. (2.10) and

eq. (B.2). The result is expressed in terms of field strength and curvature tensors:

[a0;MN ] = −1

2
ΩMN , (B.10)

[a M
0; MN ] = −1

3
ΩM

N ;M , (B.11)

[a M
0; M(ST )] =

1

2
ΩM(SΩM

T ) −
1

2
Ω

M
M(S; T ) +

7

12
RM(SΩM

T ) , (B.12)

[∆;(ST )] =
1

6
RST , (B.13)

[∆M
; MS ] =

1

6
R;S , (B.14)

[∆M
; M(ST )] =

3

20
R;ST +

1

20
�RST − 1

15
RMSRM

T +
1

30
RMNRMSNT

+
1

36
RRST +

1

30
RMNL

SRMNLT (B.15)

where Ω is the field strength of the gauge and spin connections

ΩMN = [DM ,DN ] = −iFMN +
i

2
ΣABRABMN . (B.16)

17An extensive discussion of the quantities σ and ∆ as well as their derivatives can be found in ref. [19].
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Inserting these expressions into eqs. (B.6) to (B.9) one gets

[a1] =
1

6
R − E , (B.17)

[a1;λ] =
1

12
R;λ − 1

6
ΩM

λ;M − 1

2
E;λ , (B.18)

[a1;λλ] =
1

60
�Rλλ +

1

20
R;λλ − 1

3
E;λλ − 1

45
RM

λRMλ +
1

90
RMNRMλNλ

+
1

90
RMNL

λRMNLλ +
1

12
RM

λΩMλ +
1

6
ΩMλΩM

λ − 1

6
Ω M

Mλ; λ , (B.19)

[a2] =
1

2

(

1

6
R − E

)2

+
1

6
�

(

1

5
R − E

)

− 1

180
RMNRMN

+
1

180
RMNLSRMNLS +

1

12
ΩMNΩMN , (B.20)

Finally, using Synge’s rule, one finds

[a1;λ′ ] = −[a1;λ] + [a1];λ (B.21)

[a1;λ′λ′ ] = [a1;λλ] − 2[a1;λ];λ + [a1];λλ (B.22)

leading to eq. (2.21).

C. Zeta regularization

In performing the proper time integration of the heat kernel, zeta-function regularization-

techniques are often used [22] (see also refs. [11, 23]). In this scheme, one exploits the fact

that the zeta function

ζ(s) = Tr(−D2 + E)−s , (C.1)

is UV convergent for s > d
2 and has an analytic continuation that is regular at s = 0. One

then writes formally

Seff = (−)F
1

2

∑

Tr log(−D2 + E) = −(−)F
1

2
lim
s→0

ζ ′(s) , (C.2)

and uses the relation

ζ(s) = Γ(s)−1

∫

dT T s−1K(T ) , (C.3)

to write the renormalized effective action as

Seff = −(−)F
1

2
lim
s→0

d

ds

(

Γ(s)−1

∫

dT T s−1 Tr K(T )

)

. (C.4)

All relations in eqs. (C.1) to (C.4) are well defined at large s and at s = 0 after analytic

continuation. Of course, if the integral in eq. (C.4) is UV finite for s = 0 one just recovers

the old expression, eq. (2.1), by means of the expansion 1/Γ(s) = s+O(s2). IR divergences

have to be treated separately. We do this by introducing an explicit mass µ to all fields
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such that a suppression factor of exp(−µ2T ) is present in the integrals. Let us define

ν = r + s − d
2 , then we can write the integral appearing in eq. (C.4) as

∫

dT

T 1−ν
exp

[

−Tµ2 − λ2

4T

]

= 2(2µ2)−νxνKν(x) , (C.5)

where Kν(x) are the modified Bessel functions of the second kind and we have defined

x = |λ|µ.

For the nonlocal contributions, λ 6= 0, the integral is convergent at s = 0. Using that

1/Γ(0) = 0 and [1/Γ(0)]′ = 1 one finds

Seff, fin = −(−)F 2−r− d
2 π− d

2

∑

r,λ6=0

( |λ|
µ

)r− d
2

Kr− d
2

(|λ|µ) [∆̄]λ tr[ar]λ . (C.6)

Being both IR and UV finite, this result is valid for all r and d. For r < d
2 , the integration

over T is IR convergent and we can take the limit µ → 0. Using the small-x asymptotic

expansion

Kr− d
2

(x) = K d
2
−r(x) ∼ 2

d
2
−r−1Γ(

d

2
− r)xr− d

2 (C.7)

we precisely recover eq. (2.14). However, the summation over λ is still IR sensitive as soon

as the dimension of the operator exceeds 4. It is reassuring that the presence of the IR

cutoff also takes care of the divergences for large λ as the Bessel functions are exponentially

suppressed at large argument. Similarly, for r = d
2 one uses

K0(|λ|µ) ∼ − log(|λ|µ′) µ′ =
eγE

2
µ ∼ 0.89µ , (C.8)

leading to

S
r=d/2
eff, fin = (−)F (4π)−

d
2

∑

λ6=0

log(|λ|µ′)

∫

ddx [∆̄]λ tr[a d
2

]λ . (C.9)

For |λ| = 0, the local contribution, the integral eq. (C.5) diverges at s = 0 for r < d
2 .

Applying the prescription of analytic continuation from the large s-region one finds

lim
x→0

xνKν(x) = 2ν−1Γ(ν) . (C.10)

Since the zeta function, eq. (C.1), and its derivative are analytic at s = 0 we expect that

the poles of the Gamma function in eq. (C.10) cancel with the pole of the Gamma function

in eq. (C.4). Let us define

βd,r(µ/Q) ≡ 1

2
(4π)−

d
2 lim

s→0

d

ds

(

(µ/Q)−2s Γ[r + s − d
2 ]

Γ[s]

)

, (C.11)

where a renormalization scale Q has been introduced to account for the correct dimension.

It can immediately be verified that this quantity is finite for any r. Explicitely, one finds

βd,r(µ/Q) =
1

2
(4π)−

d
2

{

(−)ν

(−ν)!

[

− log
(

µ2

Q2

)

+ H−ν

]

ν = r − d
2 ≤ 0, d even

Γ(ν) else.
(C.12)
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Here, Hn are the harmonic numbers defined as Hn =
∑n

1 k−1 with the convention H0 = 0.

The local part of the OLEA thus reads

Sζ−reg
eff, loc = −(−)F

∫

ddx
√

g
∑

r

βd,r(µ/Q)µd−2r tr[αr] . (C.13)

As with dimensional reguralization, zeta function reguralization does not capture power-

like divergences but only logarithmic ones (if present).
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